

Sandia National Laboratories

Image Processing Algorithm Test Bench

Team members from left to right: Stephen Summers, Gregg Cowley
(coach), Peter Sawyer, Chandler Johns, Ben Ogles, Bryan Redd, Alex
Bowcut.

2019-2020 Sponsor

Computers perform image classificiation differently than humans. Humans notice
difference in large scale features that help us differentiate between images of a
cat and a dog. In contrast, computers perceive images as a set of individual pixels
of various color values. To help extract meaningful information from the images,
“texture features” are computed using the pixel values.

Since existing code is not fast enough, Sandia National Laboratories tasked our
team with creating with three versions of standard Haralick algorithms: a
single-threaded version for a generic CPU, a multi-threaded version for a generic
CPU, and a multi-threaded version written in CUDA for execution in a graphics
processing unit (GPU).

BACKGROUND

Design, build, and test the performance of a single-threaded,
multi-threaded, and CUDA implementation of fourteen Haralick texture
feature algorithms. Each implementation should achieve measurable
speedup relative to publicly accessible versions of the algorithms.

PROJECT OBJECTIVE

Computed Haralick texture features
describe aspects of images like

contrast,correlation, and entropy as
numeric values. These values are used

by researchers for image
classification,pattern recognition, and

machine learning.

TEXTURE FEATURES

- Single-Threaded C++
implementation at least as fast as

Python reference code. The reference
code is unoptimized publicly

accessible code.
- Multi-Threaded Implementation at

least 5x faster than reference.
- CUDA GPU Implementation at least

20x faster than reference.

KEY SUCCESS MEASURES

The first step is creating a Gray-LevelCo-Occurrence Matrix (GLCM). The flow below shows the creation of a GLCMin a 4 x 4 window.

GLCM CALCULATION

The Haralick texture features can be
calculated onany. This is a color wood
grain image.

The color image is first computed to grayscale
by averaging color values.

A “window” of 4 x4 pixels is moved over the
grayscale image. Gray values are
converted(quantized) to 4 distinct values
gray to black, yielding a 4x4 GLCM matrix.

1. Angular Second Moment
2. Contrast
3. Correlation
4. Sum of Squares (Variance)
5. Inverse Difference Moment
6. Sum Average
7. Sum Variance
8. Sum Entropy
9. Entropy
10. Difference Variance
11. Difference Entropy
12. Information Measures of Correlation 1
13. Information Measures of Correlation 2
14. Maximal Correlation Coefficient

HARALICK TEXTURE FEATURES

CUDA is a C++ like parallel computing
platform programming designed to utilize fast
GPUs (Graphics Processing Units), like those
used in high-end graphics cards. GPUs
perform a large number of similar or
relatedcalculations simultaneously. This is
useful for large batches of images.

CUDA

Texture features vary across an image. Our
code can calculate features in user-specified
window sizes across an image, which reveals
how texture varies across an image.
Windowing enables speedup capabilities in
multi-threaded and CUDA implementations
since each window can be computed
simultaneously.

WINDOWING

The GLCM is related looking in the rightward direc-
tion. Each row is a pixel value, the first row being
black and the last being light gray. Each column
shows how many rightward neighboring pixels the
row has. In this example, there are two black pixels
with right neighbors, so row one totals to two. One
has a dark gray neighbor to the right, so the second
column has a one. The other has a gray neighbor to
the right, so the third column has a one, etc.

The graphs on the right
report test results.

Mahotas is the reference
open-source

implementation. These
graphs show our speed

without windowing.
Windowing speeds our

implementation. Our
versions are significantly
faster than open-source

code versions.

GRAPHS

Our single-threaded
implementation
(Single) is 2.5x
faster than the
reference version
(Mahotas), Our
multi-threaded
(Multi) achieved a
speedup of about 4x,
and our CUDA
achieved a speedup
of 8x. As the amount
of windows per
image increases, the
relative speedup of
the multi-threaded
and CUDA versions
also increases,

RESULTS

- Single-threaded version
suitable for a simple

microprocessor.
- Multi-threaded version can

operate on a variety of
computers or servers, and is
significantly faster than the

single-threaded version.
- The CUDA version runs on a

Graphics Processing Unit (GPU).

Sandia wanted our final product
to be easy to use and understand

by a first-time user so we
included very thorough

documentation of our code. A
(slower) Python version is also

included for ease of access.

 IMPLEMENTATIONS

USER INTERFACE

Our code is stored on Gitlab, an
online platform which runs of

updated code against a
testbench. Our testbench
includes small and large

images with a variety of texture
differences.

TESTING ENVIRONMENT

GLCM

PROJECT ARCHITECTURE

Documentation

CI/CD Environment
Development

Interface
Using Code

Testbench

Hardware
Gitlab

Anaconda

Benchmarks
Speed

Test Code
Accuracy

Features
GLCMs
Windows
Sparse Dense

Python Interface

Single-Threaded

Multi-Threaded

CUDA

Output to User
Selected Features

GLCM (if selected)

Sample Grid

Dense

Image Size
Windows

Sparse

Testing Environment

User Interface

Single-Threaded

GLCM Calculation

Feature Calculation

Output Output

GLCM Calculation

Feature Calculation

Multi-Threaded

GLCM Calculation

Feature Calculation

Output

CUDA

Repeat for each
GLCM

Each GLCM

Feature Calculation for
each GLCM

Each GLCM split into
several threads

Feature Calculation for GLCM

Implementations

Feature Calculation
GLCM

Feature List

GLCM Calculation
Image

Offsets

Number of Gray Tones

Symmetric

Calculation

0 1 1 0
1 0 0 2
1 0 1 1
0 1 2 1

